Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38401891

RESUMO

Klebsiella pneumoniae is the leading cause of neonatal sepsis and is increasingly difficult to treat due to antibiotic resistance. Vaccination represents a tractable approach to combat this resistant bacterium; however, there is currently not a licensed vaccine. Surface polysaccharides, including O-antigens of lipopolysaccharide, have long been attractive candidates for vaccine inclusion. Herein we describe the generation of a bioconjugate vaccine targeting seven predominant O-antigen subtypes in K. pneumoniae. Each bioconjugate was immunogenic in isolation, with limited cross-reactivity among subtypes. Vaccine-induced antibodies demonstrated varying degrees of binding to a wide variety of K. pneumoniae strains. Further, sera from vaccinated mice induced complement-mediated killing of many of these strains. Finally, increased capsule interfered with O-antigen antibodies' ability to bind and mediate killing of some K. pneumoniae strains. Taken together, these data indicate that this novel heptavalent O-antigen bioconjugate vaccine formulation exhibits limited efficacy against some, but not all, K. pneumoniae isolates.

2.
PLoS Pathog ; 19(5): e1011367, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146068

RESUMO

Klebsiella pneumoniae presents as two circulating pathotypes: classical K. pneumoniae (cKp) and hypervirulent K. pneumoniae (hvKp). Classical isolates are considered urgent threats due to their antibiotic resistance profiles, while hvKp isolates have historically been antibiotic susceptible. Recently, however, increased rates of antibiotic resistance have been observed in both hvKp and cKp, further underscoring the need for preventive and effective immunotherapies. Two distinct surface polysaccharides have gained traction as vaccine candidates against K. pneumoniae: capsular polysaccharide and the O-antigen of lipopolysaccharide. While both targets have practical advantages and disadvantages, it remains unclear which of these antigens included in a vaccine would provide superior protection against matched K. pneumoniae strains. Here, we report the production of two bioconjugate vaccines, one targeting the K2 capsular serotype and the other targeting the O1 O-antigen. Using murine models, we investigated whether these vaccines induced specific antibody responses that recognize K2:O1 K. pneumoniae strains. While each vaccine was immunogenic in mice, both cKp and hvKp strains exhibited decreased O-antibody binding in the presence of capsule. Further, O1 antibodies demonstrated decreased killing in serum bactericidal assays with encapsulated strains, suggesting that the presence of K. pneumoniae capsule blocks O1-antibody binding and function. Finally, the K2 vaccine outperformed the O1 vaccine against both cKp and hvKp in two different murine infection models. These data suggest that capsule-based vaccines may be superior to O-antigen vaccines for targeting hvKp and some cKp strains, due to capsule blocking the O-antigen.


Assuntos
Infecções por Klebsiella , Vacinas , Camundongos , Animais , Virulência , Antígenos O , Klebsiella pneumoniae , Lipopolissacarídeos/metabolismo , Antibacterianos/farmacologia , Infecções por Klebsiella/prevenção & controle
3.
Glycobiology ; 33(1): 57-74, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36239418

RESUMO

Bacterial protein glycosylation is commonly mediated by oligosaccharyltransferases (OTases) that transfer oligosaccharides en bloc from preassembled lipid-linked precursors to acceptor proteins. Natively, O-linking OTases usually transfer a single repeat unit of the O-antigen or capsular polysaccharide to the side chains of serine or threonine on acceptor proteins. Three major families of bacterial O-linking OTases have been described: PglL, PglS, and TfpO. TfpO is limited to transferring short oligosaccharides both in its native context and when heterologously expressed in glycoengineered Escherichia coli. On the other hand, PglL and PglS can transfer long-chain polysaccharides when expressed in glycoengineered E. coli. Herein, we describe the discovery and functional characterization of a novel family of bacterial O-linking OTases termed TfpM from Moraxellaceae bacteria. TfpM proteins are similar in size and sequence to TfpO enzymes but can transfer long-chain polysaccharides to acceptor proteins. Phylogenetic analyses demonstrate that TfpM proteins cluster in distinct clades from known bacterial OTases. Using a representative TfpM enzyme from Moraxella osloensis, we determined that TfpM glycosylates a C-terminal threonine of its cognate pilin-like protein and identified the minimal sequon required for glycosylation. We further demonstrated that TfpM has broad substrate tolerance and can transfer diverse glycans including those with glucose, galactose, or 2-N-acetyl sugars at the reducing end. Last, we find that a TfpM-derived bioconjugate is immunogenic and elicits serotype-specific polysaccharide IgG responses in mice. The glycan substrate promiscuity of TfpM and identification of the minimal TfpM sequon renders this enzyme a valuable additional tool for expanding the glycoengineering toolbox.


Assuntos
Hexosiltransferases , Moraxellaceae , Animais , Camundongos , Moraxellaceae/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Filogenia , Hexosiltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Fímbrias , Polissacarídeos/metabolismo , Bactérias/metabolismo
4.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168360

RESUMO

Klebsiella pneumoniae is a concerning pathogen that is now the leading cause of neonatal sepsis and is increasingly difficult to treat due to heightened antibiotic resistance. Thus, there is an urgent need for preventive and effective immunotherapies targeting K. pneumoniae. Vaccination represents a tractable approach to combat this resistant bacterium in some settings; however, there is currently not a licensed K. pneumoniae vaccine available. K. pneumoniae surface polysaccharides, including the terminal O-antigen polysaccharides of lipopolysaccharide, have long been attractive candidates for vaccine inclusion. Herein we describe the generation of a bioconjugate vaccine targeting seven of the predominant O-antigen subtypes in K. pneumoniae. Each of the seven bioconjugates were immunogenic in isolation, with limited cross-reactivity among subtypes. Vaccine-induced antibodies demonstrated varying degrees of binding to a wide variety of K. pneumoniae strains, including suspected hypervirulent strains, all expressing different O-antigen and capsular polysaccharide combinations. Further, sera from vaccinated mice induced complement-mediated killing of many of these K. pneumoniae strains. Finally, we found that increased quantity of capsule interferes with O-antigen antibodies' ability to bind and mediate killing of some K. pneumoniae strains, including those carrying hypervirulence-associated genes. Taken together, these data indicate that this novel heptavalent O-antigen bioconjugate vaccine formulation exhibits promising efficacy against some, but not all, K. pneumoniae isolates.

5.
Vaccine ; 40(42): 6107-6113, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36115800

RESUMO

Capsular polysaccharides (CPSs), with which most pathogenic bacterial surfaces are decorated, have been used as the main components of glycoconjugate vaccines against bacterial diseases in clinical practice worldwide. Pneumococcal conjugate vaccines (PCVs) are administered globally to prevent invasive pneumococcal disease (IPD). While PCVs have played important roles in controlling IPD in all age groups, their empirical, and labor-intensive chemical conjugation yield poorly characterized, heterogeneous, and variably immunogenic vaccines, with poor immune responses in high-risk populations such as the elderly and patients with weak immune systems. We previously developed a method that bypasses the dependency of chemical conjugation and instead exploits prokaryotic glycosylation systems to produce pneumococcal conjugate vaccines. The bioconjugation platform relies on a conjugating enzyme to transfer a bacterial polysaccharide to an engineered carrier protein all within the lab safe bacterium E. coli. In these studies, we demonstrate that a serotype 8 pneumococcal bioconjugate vaccine is highly immunogenic and elicits functionally protective anti-serotype 8 antibody responses. Specifically, using multiple models we show that mice immunized with multiple doses of a serotype 8 bioconjugate vaccine elicit antibody responses that mediate opsonophagocytic killing, protect mice from systemic infection, and decrease the ability of serotype 8 pneumococci to colonize the nasopharynx and disseminate. Collectively, these studies demonstrate the utility of bioconjugation to produce efficacious pneumococcal conjugate vaccines.


Assuntos
Infecções Pneumocócicas , Vacinas Pneumocócicas , Animais , Anticorpos Antibacterianos , Proteínas de Transporte , Escherichia coli , Camundongos , Polissacarídeos Bacterianos , Vacinas Conjugadas
6.
ACS Infect Dis ; 7(11): 3111-3123, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34633812

RESUMO

Group B Streptococcus (GBS) is a leading cause of neonatal infections and invasive diseases in nonpregnant adults worldwide. Developing a protective conjugate vaccine targeting the capsule of GBS has been pursued for more than 30 years; however, it has yet to yield a licensed product. In this study, we present a novel bioconjugation platform for producing a prototype multivalent GBS conjugate vaccine and its subsequent analytical and immunological characterizations. Using a glycoengineering strategy, we generated strains of Escherichia coli that recombinantly express the type Ia, type Ib, and type III GBS capsular polysaccharides. We then combined the type Ia-, Ib-, and III-capsule-expressing E. coli strains with an engineered Pseudomonas aeruginosa exotoxin A (EPA) carrier protein and the PglS oligosaccharyltransferase. Coexpression of a GBS capsule, the engineered EPA protein, and PglS enabled the covalent attachment of the target GBS capsule to an engineered serine residue on EPA, all within the periplasm of E. coli. GBS bioconjugates were purified, analytically characterized, and evaluated for immunogenicity and functional antibody responses. This proof-of-concept study signifies the first step in the development of a next-generation multivalent GBS bioconjugate vaccine, which was validated by the production of conjugates that are able to elicit functional antibodies directed against the GBS capsule.


Assuntos
Escherichia coli , Infecções Estreptocócicas , Adulto , Anticorpos Antibacterianos , Escherichia coli/genética , Humanos , Recém-Nascido , Infecções Estreptocócicas/prevenção & controle , Streptococcus agalactiae/genética , Vacinas Combinadas
7.
Glycobiology ; 31(9): 1192-1203, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-33997889

RESUMO

Bioconjugate vaccines, consisting of polysaccharides attached to carrier proteins, are enzymatically generated using prokaryotic glycosylation systems in a process termed bioconjugation. Key to bioconjugation are a group of enzymes known as oligosaccharyltransferases (OTases) that transfer polysaccharides to engineered carrier proteins containing conserved amino acid sequences known as sequons. The most recently discovered OTase, PglS, has been shown to have the broadest substrate scope, transferring many different types of bacterial glycans including those with glucose at the reducing end. However, PglS is currently the least understood in terms of the sequon it recognizes. PglS is a pilin-specific O-linking OTase that naturally glycosylates a single protein, ComP. In addition to ComP, we previously demonstrated that an engineered carrier protein containing a large fragment of ComP is also glycosylated by PglS. Here we sought to identify the minimal ComP sequon sufficient for PglS glycosylation. We tested >100 different ComP fragments individually fused to Pseudomonas aeruginosa exotoxin A (EPA), leading to the identification of an 11-amino acid sequence sufficient for robust glycosylation by PglS. We also demonstrate that the placement of the ComP sequon on the carrier protein is critical for stability and subsequent glycosylation. Moreover, we identify novel sites on the surface of EPA that are amenable to ComP sequon insertion and find that Cross-Reactive Material 197 fused to a ComP fragment is also glycosylated. These results represent a significant expansion of the glycoengineering toolbox as well as our understanding of bacterial O-linking sequons.


Assuntos
Hexosiltransferases , Sequência de Aminoácidos , Proteínas de Fímbrias/metabolismo , Glicosilação , Hexosiltransferases/metabolismo , Proteínas de Membrana
8.
ACS Synth Biol ; 9(1): 132-143, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31829621

RESUMO

Cyanobacteria are photoautotrophic prokaryotes that serve as key model organisms to study basic photosynthetic processes and are potential carbon-negative production chassis for commodity and high-value chemicals. The development of new synthetic biology tools and improvement of current ones is a requisite for furthering these organisms as models and production vehicles. CRISPR interference (CRISPRi) allows for targeted gene repression using a DNase-dead Cas nuclease ("dCas"). Here, we describe a titratable dCas12a (dCpf1) CRISPRi system and apply it to repress key photosynthetic processes in the fast-growing cyanobacterium Synechococcus sp. UTEX 2973 (S2973). The system relies on a lac repressor system that retains tight regulation in the absence of inducer (0-10% repression) while maintaining the capability for >90% repression of high-abundance gene targets. We determined that dCas12a is less toxic than dCas9. We tested the efficacy of the system toward eYFP and three native targets in S2973: the phycobilisome antenna, glycogen synthesis, and photosystem I (PSI), an essential part of the photosynthetic electron transport chain in oxygenic photoautotrophs. PSI was knocked down indirectly by repressing the protein factor BtpA involved in stabilizing core PSI proteins. We could reduce cellular PSI titer by 87% under photoautotrophic conditions, and we characterized these cells to gain insights into the response of the strain to the low PSI content. The ability to tightly regulate and time the (de)repression of essential genes in trans will allow for the study of photosynthetic processes that are not accessible using knockout mutants.


Assuntos
Sistemas CRISPR-Cas , Fotossíntese/genética , Synechococcus/crescimento & desenvolvimento , Synechococcus/genética , Proteínas de Bactérias/genética , Sequência de Bases , Proteína 9 Associada à CRISPR/genética , Regulação Bacteriana da Expressão Gênica , Técnicas de Silenciamento de Genes , Isopropiltiogalactosídeo/farmacologia , Óperon Lac , Repressores Lac/genética , Proteínas Luminescentes/genética , Microrganismos Geneticamente Modificados , Complexo de Proteína do Fotossistema I/genética , Plasmídeos/genética , RNA Guia de Cinetoplastídeos/genética
9.
ACS Synth Biol ; 8(8): 1941-1951, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31284716

RESUMO

Cyanobacteria produce numerous valuable bioactive secondary metabolites (natural products) including alkaloids, isoprenoids, nonribosomal peptides, and polyketides. However, the genomic organization of the biosynthetic gene clusters, complex gene expression patterns, and low compound yields synthesized by the native producers currently limits access to the vast majority of these valuable molecules for detailed studies. Molecular cloning and expression of such clusters in heterotrophic hosts is often precarious owing to genetic and biochemical incompatibilities. Production of such biomolecules in photoautotrophic hosts analogous to the native producers is an attractive alternative that has been under-explored. Here, we describe engineering of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce key compounds of the hapalindole family of indole-isonitrile alkaloids. Engineering of the 42-kbp "fam" hapalindole pathway from the cyanobacterium Fischerella ambigua UTEX 1903 into S2973 was accomplished by rationally reconstructing six to seven core biosynthetic genes into synthetic operons. The resulting Synechococcus strains afforded controllable production of indole-isonitrile biosynthetic intermediates and hapalindoles H and 12-epi-hapalindole U at a titer of 0.75-3 mg/L. Exchanging genes encoding fam cyclase enzymes in the synthetic operons was employed to control the stereochemistry of the resulting product. Establishing a robust expression system provides a facile route to scalable levels of similar natural and new forms of bioactive hapalindole derivatives and its structural relatives (e.g., fischerindoles, welwitindolinones). Moreover, this versatile expression system represents a promising tool for exploring other functional characteristics of orphan gene products that mediate the remarkable biosynthesis of this important family of natural products.


Assuntos
Alcaloides Indólicos/metabolismo , Synechococcus/metabolismo , Alcaloides/metabolismo , Indóis/metabolismo , Família Multigênica/genética , Peptídeos/metabolismo
10.
Sci Rep ; 9(1): 1360, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718738

RESUMO

Cyanobacteria are among only a few organisms that naturally synthesize long-chain alkane and alkene hydrocarbons. Cyanobacteria use one of two pathways to synthesize alka/enes, either acyl-ACP reductase (Aar) and aldehyde deformylating oxygenase (Ado) or olefin synthase (Ols). The genomes of cyanobacteria encode one of these pathways but never both, suggesting a mutual exclusivity. We studied hydrocarbon pathway compatibility using the model cyanobacterium Synechococcus sp. PCC 7002 (S7002) by co-expressing Ado/Aar and Ols and by entirely replacing Ols with three other types of hydrocarbon biosynthetic pathways. We find that Ado/Aar and Ols can co-exist and that slower growth occurs only when Ado/Aar are overexpressed at 38 °C. Furthermore, Ado/Aar and the non-cyanobacterial enzymes UndA and fatty acid photodecarboxylase are able to substitute for Ols in a knockout strain and conditionally rescue slow growth. Production of hydrocarbons by UndA in S7002 required a rational mutation to increase substrate range. Expression of the non-native enzymes in S7002 afforded unique hydrocarbon profiles and alka/enes not naturally produced by cyanobacteria. This suggests that the biosynthetic enzyme and the resulting types of hydrocarbons are not critical to supporting growth. Exchanging or mixing hydrocarbon pathways could enable production of novel types of CO2-derived hydrocarbons in cyanobacteria.


Assuntos
Aciltransferases/metabolismo , Vias Biossintéticas , Hidrocarbonetos/metabolismo , Synechococcus/enzimologia , Genes Bacterianos , Mutação/genética , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Especificidade por Substrato , Synechococcus/genética , Synechococcus/crescimento & desenvolvimento
11.
J Biol Chem ; 293(14): 5044-5052, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28972147

RESUMO

Cyanobacteria are photosynthetic prokaryotes showing great promise as biocatalysts for the direct conversion of CO2 into fuels, chemicals, and other value-added products. Introduction of just a few heterologous genes can endow cyanobacteria with the ability to transform specific central metabolites into many end products. Recent engineering efforts have centered around harnessing the potential of these microbial biofactories for sustainable production of chemicals conventionally produced from fossil fuels. Here, we present an overview of the unique chemistry that cyanobacteria have been co-opted to perform. We highlight key lessons learned from these engineering efforts and discuss advantages and disadvantages of various approaches.


Assuntos
Biocombustíveis/microbiologia , Cianobactérias/fisiologia , Microbiologia Industrial/métodos , Engenharia Metabólica/métodos , Biocatálise , Produtos Biológicos/metabolismo , Cianobactérias/química , Cianobactérias/genética , Análise do Fluxo Metabólico/métodos , Fotossíntese
12.
Biochemistry ; 55(41): 5818-5831, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27668828

RESUMO

The first step in the nonribosomal peptide synthetase (NRPS)-based biosynthesis of chloramphenicol is the ß-hydroxylation of the precursor l-p-aminophenylalanine (l-PAPA) catalyzed by the monooxygenase CmlA. The active site of CmlA contains a dinuclear iron cluster that is reduced to the diferrous state (WTR) to initiate O2 activation. However, rapid O2 activation occurs only when WTR is bound to CmlP, the NRPS to which l-PAPA is covalently attached. Here the X-ray crystal structure of WTR is reported, which is very similar to that of the as-isolated diferric enzyme in which the irons are coordinately saturated. X-ray absorption spectroscopy is used to investigate the WTR cluster ligand structure as well as the structures of WTR in complex with a functional CmlP variant (CmlPAT) with and without l-PAPA attached. It is found that formation of the active WTR:CmlPAT-l-PAPA complex converts at least one iron of the cluster from six- to five-coordinate by changing a bidentately bound amino acid carboxylate to monodentate on Fe1. The only bidentate carboxylate in the structure of WTR is E377. The crystal structure of the CmlA variant E377D shows only monodentate carboxylate coordination. Reduced E377D reacts rapidly with O2 in the presence or absence of CmlPAT-l-PAPA, showing loss of regulation. However, this variant fails to catalyze hydroxylation, suggesting that E377 has the dual role of coupling regulation of O2 reactivity with juxtaposition of the substrate and the reactive oxygen species. The carboxylate shift in response to substrate binding represents a novel regulatory strategy for oxygen activation in diiron oxygenases.


Assuntos
Ácidos Carboxílicos/química , Ferro/química , Oxigenases de Função Mista/química , Oxigênio/química , Peptídeo Sintases/química , Cristalografia por Raios X , Cinética , Especificidade por Substrato , Espectroscopia por Absorção de Raios X
13.
J Biol Inorg Chem ; 21(5-6): 589-603, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27229511

RESUMO

The diiron cluster-containing oxygenase CmlI catalyzes the conversion of the aromatic amine precursor of chloramphenicol to the nitroaromatic moiety of the active antibiotic. The X-ray crystal structures of the fully active, N-terminally truncated CmlIΔ33 in the chemically reduced Fe(2+)/Fe(2+) state and a cis µ-1,2(η (1):η (1))-peroxo complex are presented. These structures allow comparison with the homologous arylamine oxygenase AurF as well as other types of diiron cluster-containing oxygenases. The structural model of CmlIΔ33 crystallized at pH 6.8 lacks the oxo-bridge apparent from the enzyme optical spectrum in solution at higher pH. In its place, residue E236 forms a µ-1,3(η (1):η (2)) bridge between the irons in both models. This orientation of E236 stabilizes a helical region near the cluster which closes the active site to substrate binding in contrast to the open site found for AurF. A very similar closed structure was observed for the inactive dimanganese form of AurF. The observation of this same structure in different arylamine oxygenases may indicate that there are two structural states that are involved in regulation of the catalytic cycle. Both the structural studies and single crystal optical spectra indicate that the observed cis µ-1,2(η (1):η (1))-peroxo complex differs from the µ-η (1):η (2)-peroxo proposed from spectroscopic studies of a reactive intermediate formed in solution by addition of O2 to diferrous CmlI. It is proposed that the structural changes required to open the active site also drive conversion of the µ-1,2-peroxo species to the reactive form.


Assuntos
Cloranfenicol/biossíntese , Oxigenases/metabolismo , Cloranfenicol/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Oxigenases/química , Oxigenases/genética
14.
Proc Natl Acad Sci U S A ; 112(2): 388-93, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548185

RESUMO

Intradiol aromatic ring-cleaving dioxygenases use an active site, nonheme Fe(3+) to activate O2 and catecholic substrates for reaction. The inability of Fe(3+) to directly bind O2 presents a mechanistic conundrum. The reaction mechanism of protocatechuate 3,4-dioxygenase is investigated here using the alternative substrate 4-fluorocatechol. This substrate is found to slow the reaction at several steps throughout the mechanistic cycle, allowing the intermediates to be detected in solution studies. When the reaction was initiated in an enzyme crystal, it was found to halt at one of two intermediates depending on the pH of the surrounding solution. The X-ray crystal structure of the intermediate at pH 6.5 revealed the key alkylperoxo-Fe(3+) species, and the anhydride-Fe(3+) intermediate was found for a crystal reacted at pH 8.5. Intermediates of these types have not been structurally characterized for intradiol dioxygenases, and they validate four decades of spectroscopic, kinetic, and computational studies. In contrast to our similar in crystallo crystallographic studies of an Fe(2+)-containing extradiol dioxygenase, no evidence for a superoxo or peroxo intermediate preceding the alkylperoxo was found. This observation and the lack of spectroscopic evidence for an Fe(2+) intermediate that could bind O2 are consistent with concerted formation of the alkylperoxo followed by Criegee rearrangement to yield the anhydride and ultimately ring-opened product. Structural comparison of the alkylperoxo intermediates from the intra- and extradiol dioxygenases provides a rationale for site specificity of ring cleavage.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Protocatecoate-3,4-Dioxigenase/química , Protocatecoate-3,4-Dioxigenase/metabolismo , Domínio Catalítico , Catecóis/metabolismo , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Pseudomonas putida/enzimologia , Especificidade por Substrato
15.
Biochemistry ; 52(38): 6662-71, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23980641

RESUMO

A family of dinuclear iron cluster-containing oxygenases that catalyze ß-hydroxylation tailoring reactions in natural product biosynthesis by nonribosomal peptide synthetase (NRPS) systems was recently described [Makris, T. M., Chakrabarti, M., Münck, E., and Lipscomb, J. D. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 15391-15396]. Here, the 2.17 Å X-ray crystal structure of the archetypal enzyme from the family, CmlA, is reported. CmlA catalyzes ß-hydroxylation of l-p-aminophenylalanine during chloramphenicol biosynthesis. The fold of the N-terminal domain of CmlA is unlike any previously reported, but the C-terminal domain has the αßßα fold of the metallo-ß-lactamase (MBL) superfamily. The diiron cluster bound in the C-terminal domain is coordinated by an acetate, three His residues, two Asp residues, one Glu residue, and a bridging oxo moiety. One of the Asp ligands forms an unusual monodentate bridge. No other oxygen-activating diiron enzyme utilizes this ligation or the MBL protein fold. The N-terminal domain facilitates dimerization, but using computational docking and a sequence-based structural comparison to homologues, we hypothesize that it likely serves additional roles in NRPS recognition and the regulation of O2 activation.


Assuntos
Ferro/química , Oxigenases de Função Mista/química , Peptídeo Sintases/metabolismo , Sítios de Ligação , Cloranfenicol/biossíntese , Cristalografia por Raios X , Hidroxilação , Oxigenases de Função Mista/metabolismo , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...